首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   6篇
  国内免费   4篇
测绘学   2篇
大气科学   22篇
地球物理   24篇
地质学   71篇
海洋学   5篇
天文学   9篇
自然地理   3篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   5篇
  2016年   6篇
  2015年   3篇
  2014年   5篇
  2013年   11篇
  2012年   12篇
  2011年   8篇
  2010年   8篇
  2009年   14篇
  2008年   6篇
  2007年   7篇
  2006年   13篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   4篇
  1998年   2篇
  1995年   2篇
  1994年   3篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1969年   1篇
  1965年   1篇
  1964年   1篇
  1962年   1篇
排序方式: 共有136条查询结果,搜索用时 62 毫秒
91.
In this paper, we introduce a novel stochastic model for the permeability tensor associated with stationary random porous media. In the light of recent works on mesoscale modeling of permeability, we first discuss the physical interpretation of the permeability tensor randomness. Subsequently, we propose a nonparametric prior probabilistic model for non‐Gaussian permeability tensor random fields, making use of the information theory and a maximum entropy procedure, and provide a physical interpretation of the model parameters. Finally, we demonstrate the capability of the considered class of random fields to generate higher levels of statistical fluctuations for selected stochastic principal permeabilities. This unique flexibility offered by the parameterization of the model opens up many new possibilities for both forward simulations (e.g. for uncertainty propagation in predictive simulations) and stochastic inverse problem solving. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
92.
The drumlin field at Múlajökull, Iceland, is considered to be an active field in that partly and fully ice‐covered drumlins are being shaped by the current glacier regime. We test the hypothesis that the drumlins form by a combination of erosion and deposition during successive surge cycles. We mapped and measured 143 drumlins and studied their stratigraphy in four exposures. All exposures reveal several till units where the youngest till commonly truncates older tills on the drumlin flanks and proximal slope. Drumlins inside a 1992 moraine are relatively long and narrow whereas drumlins outside the moraine are wider and shorter. A conceptual model suggests that radial crevasses create spatial heterogeneity in normal stress on the bed so that deposition is favoured beneath crevasses and erosion in adjacent areas. Consequently, the crevasse pattern of the glacier controls the location of proto‐drumlins. A feedback mechanism leads to continued crevassing and increased sedimentation at the location of the proto‐drumlins. The drumlin relief and elongation ratio increases as the glacier erodes the sides and drapes a new till over the landform through successive surges. Our observations of this only known active drumlin field may have implications for the formation and morphological evolution of Pleistocene drumlin fields with similar composition, and our model may be tested on modern drumlins that may become exposed upon future ice retreat.  相似文献   
93.
Patterns of decadal-scale Arctic warming events in simulated climate   总被引:1,自引:1,他引:0  
Pronounced positive decadal-scale temperature anomalies occurred in the Arctic region in the first half of the twentieth century, an episode known as the early twentieth century warming (ETCW). Analyzing a 3,000-year unperturbed climate simulation performed with the Max Planck Institute Earth System Model, we demonstrate that internal variability of the Northern Hemisphere climate system is sufficient to reproduce warm events matching the observed ETCW. We perform a superposed epoch analysis on simulated data and identify 26 Arctic warming episodes compatible with the ETCW. The simulated events reproduce, in their ensemble average, magnitude as well as spatial and temporal extent of the observed ETCW. In individual realizations, the ETCW-like events indicate that different patterns of internally generated decadal Arctic warming are possible, including pan-Arctic warming events. We investigate the dynamics that typically lead to the simulated warming events: positive oceanic heat transport anomalies that form in the North Atlantic initialize the warming events and trigger an ocean-ice-albedo feedback in the Barents Sea region. The consequent reduction in sea-ice extent leads to enhanced multi-year surface warming through strengthened ocean heat release to the atmosphere. The oceanic heat transport anomalies reduce to pre-event levels around the year of the maximum warming. However, the warming events typically lasts for another 5–7 years until the sea-ice extent recovers to pre-event conditions.  相似文献   
94.
The Lavanttal Fault Zone (LFZ) is generally considered to be related to Miocene orogen-parallel escape tectonics in the Eastern Alps. By applying thermochronological methods with retention temperatures ranging from ~450 to ~40°C we have investigated the thermochronological evolution of the LFZ and the adjacent Koralm Complex (Eastern Alps). 40Ar/39Ar dating on white mica and zircon fission track (ZFT) thermochronology were carried out on host rocks (HRs) and fault-related rocks (cataclasites and fault gouges) directly adjacent to the unfaulted protolith. These data are interpreted together with recently published apatite fission track (AFT) and apatite (U-Th)/He ages. Sample material was taken from three drill cores transecting the LFZ. Ar release spectra in cataclastic shear zones partly show strongly rejuvenated incremental ages, indicating lattice distortion during cataclastic shearing or hydrothermal alteration. Integrated plateau ages from fault rocks (~76 Ma) are in parts slightly younger than plateau ages from HRs (>80 Ma). Incremental ages from fault rock samples are in part highly reduced (~43 Ma). ZFT ages within fault gouges (~65 Ma) are slightly reduced compared to the ages from HRs, and fission tracks show reduced lengths. Combining these results with AFT and apatite (U-Th)/He ages from fault rocks of the same fault zone allows the recognition of distinct faulting events along the LFZ from Miocene to Pliocene times. Contemporaneous with this faulting, the Koralm Complex experienced accelerated cooling in Late Miocene times. Late-Cretaceous to Palaeogene movement on the LFZ cannot be clearly proven. 40Ar/39Ar muscovite and ZFT ages were probably partly thermally affected along the LFZ during Miocene times.  相似文献   
95.
Subsidence analysis of 16 wells in the Austrian Molasse basin documents major spatial and temporal changes in tectonic subsidence as well as a late-stage surface uplift. The timing of the main phase of tectonic subsidence shifted from early Oligocene in the western part of the peripheral foreland to the early Miocene in the eastern part. These temporal and spatial changes in tectonic subsidence reflect a change from oblique dextral to sinistral convergence between the Alpine nappe stack and its foreland. The main phase of sediment accumulation was delayed to the early Miocene and led to the infill of the basin and a major second, sediment-load driven phase of basement subsidence. Sediment accumulation rates in the basin reflect the build-up of topography in the Alpine mountain chain. Since approximately 6 Ma a pronounced regional uplift of the entire Molasse basin has taken place, marking the transition from lateral extrusion to orthogonal contraction within the Alpine system and deep-seated changes in geodynamic boundary conditions, possibly due to delamination of previously thickened lithosphere. Surface uplift is contemporaneous with similar processes in extra-Alpine Central Europe, where it is interpreted to reflect intra-plate stress changes.  相似文献   
96.
Coordinated Ocean-ice Reference Experiments (COREs) are presented as a tool to explore the behaviour of global ocean-ice models under forcing from a common atmospheric dataset. We highlight issues arising when designing coupled global ocean and sea ice experiments, such as difficulties formulating a consistent forcing methodology and experimental protocol. Particular focus is given to the hydrological forcing, the details of which are key to realizing simulations with stable meridional overturning circulations.The atmospheric forcing from [Large, W., Yeager, S., 2004. Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. NCAR Technical Note: NCAR/TN-460+STR. CGD Division of the National Center for Atmospheric Research] was developed for coupled-ocean and sea ice models. We found it to be suitable for our purposes, even though its evaluation originally focussed more on the ocean than on the sea-ice. Simulations with this atmospheric forcing are presented from seven global ocean-ice models using the CORE-I design (repeating annual cycle of atmospheric forcing for 500 years). These simulations test the hypothesis that global ocean-ice models run under the same atmospheric state produce qualitatively similar simulations. The validity of this hypothesis is shown to depend on the chosen diagnostic. The CORE simulations provide feedback to the fidelity of the atmospheric forcing and model configuration, with identification of biases promoting avenues for forcing dataset and/or model development.  相似文献   
97.
The epithermal Shila-Paula Au–Ag district is characterized by numerous veins hosted in Tertiary volcanic rocks of the Western Cordillera (southern Peru). Field studies of the ore bodies reveal a systematic association of a main E–W vein with secondary N55–60°W veins—two directions that are also reflected by the orientation of fluid-inclusion planes in quartz crystals of the host rock. In areas where this pattern is not recognized, such as the Apacheta sector, vein emplacement seems to have been guided by regional N40°E and N40°W fractures. Two main vein-filling stages are identified. stage 1 is a quartz–adularia–pyrite–galena–sphalerite–chalcopyrite–electrum–Mn silicate–carbonate assemblage that fills the main E–W veins. stage 2, which contains most of the precious-metal mineralization, is divided into pre-bonanza and bonanza substages. The pre-bonanza substage consists of a quartz–adularia–carbonate assemblage that is observed within the secondary N45–60°W veins, in veinlets that cut the stage 1 assemblage, and in final open-space fillings. The two latter structures are finally filled by the bonanza substage characterized by a Fe-poor sphalerite–chalcopyrite–pyrite–galena–tennantite–tetrahedrite–polybasite–pearceite–electrum assemblage. The ore in the main veins is systematically brecciated, whereas the ore in the secondary veins and geodes is characteristic of open-space crystallization. Microthermometric measurements on sphalerite from both stages and on quartz and calcite from stage 2 indicate a salinity range of 0 to 15.5 wt% NaCl equivalent and homogenization temperatures bracketed between 200 and 330°C. Secondary CO2-, N2- and H2S-bearing fluid inclusions are also identified. The age of vein emplacement, based on 40Ar/39Ar ages obtained on adularia of different veins, is estimated at around 11 Ma, with some overlap between adularia of stage 1 (11.4±0.4 Ma) and of stage 2 (10.8±0.3 Ma). A three-phase tectonic model has been constructed to explain the vein formation. Phase 1 corresponds to the assumed development of E–W sinistral shear zones and associated N60°W cleavages under the effects of a NE–SW shortening direction that is recognized at Andean scale. These structures contain the stage 1 ore assemblage that was brecciated during ongoing deformation. Phase 2 is a reactivation of earlier structures under a NW–SE shortening direction that allowed the reopening of the preexisting schistosity and the formation of scarce N50°E-striking S2-cleavage planes filled by the stage 2 pre-bonanza minerals. Phase 3 coincides with the bonanza ore emplacement in the secondary N45–60°W veins and also in open-space in the core of the main E–W veins. Our combined tectonic, textural, mineralogical, fluid-inclusion, and geochronological study presents a complete model of vein formation in which the reactivation of previously formed tectonic structures plays a significant role in ore formation.  相似文献   
98.
36Cl断代法应用于青藏高原末次快速隆升的构造事件研究   总被引:3,自引:0,他引:3  
青藏高原的形成与隆升是多期次的,尤其早更新世晚期的快速隆升对全球气候变化、我国西部盆-山地貌形成与荒漠化的出现有着重大影响,这已成为近年地学研究的热点问题.通过对高原东北缘-柴达木盆地西部地区角度不整合面上下地层中红色泥岩36Cl 断代法定年,首次测定该事件发生在早更新世晚期至中更新世(1.54~0.28 Ma B.P.)之间.结合敦煌盆地同时代地层(0.837 Ma B.P.和1.142 Ma B.P)的低角度掀斜现象,以及前人在塔里木盆地、柴达木盆地、吐鲁番-哈密盆地、酒西盆地的研究结果,认为早更新世晚期,受青藏高原快速隆升北向挤压作用的影响,我国西北地区发生了一次重要的构造事件,造成大范围的挤压变形与山脉隆升,这对我国西北地区构造格架的最终形成和晚期油气运移成藏具有重要意义.  相似文献   
99.
阿尔金断裂带年代学和阿尔金山隆升   总被引:34,自引:2,他引:34  
对阿尔金山断裂带内变形的中生代剪切带中眼球状片麻岩、糜棱岩化花岗片麻岩和新生代剪切带中强变形绿片岩系列样品中同构造新生云母矿物的40Ar-39Ar法定年,获得了164.3~178.4Ma和26.3~36.4Ma两组年龄。结合阿尔金走滑断裂水平错距的研究,认为164.3~178.4Ma的年龄代表阿尔金走滑断裂带的起始活动时间(早侏罗世末—中侏罗世),尔后分别在距今100~85Ma,40~25Ma和10~8Ma发生多次脉冲式走滑活动。新生代沉积物研究表明上干柴沟组和下干柴沟组砂岩骨架矿物成份含量明显不同,随时间变化,石英含量减少,岩屑组份和不稳定矿物含量增加,分选性逐渐变差。这表明阿尔金山在渐新世(下干柴沟组时期)开始发生明显的隆升。地震和柴达木—塔里木盆地沉积速率资料显示在晚中新世山体也发生了一次强烈的隆升。七个泉组(上新世末—早更新世初)和下伏沉积物(上新世中期)之间的角度不整合反映了最后一次强烈隆升事件发生在晚上新世。多数隆升事件和阿尔金断裂带新生代脉冲式活动的同位素年龄完全一致,表明阿尔金山的隆升和断裂带的活动具有密切的成因联系。  相似文献   
100.
To place constraints on the formation and deformation history of the major Variscan shear zone in the Bavarian Forest, Bavarian Pfahl zone, SW Bohemian Massif, granitic dykes and their feldspar-phyric massive host rock (so-called palite), zircons were dated by the U–Pb isotope dilution and Pb-evaporation methods. The dated samples comprise two host rocks and four dykes from a K-rich calc-alkaline complex adjoining the SW part of the Bavarian Pfahl shear zone. The palites, which appear to be the oldest magmatic rocks emplaced in the shear zone, yield ages of 334±3, 334.5±1.1 Ma (average 207Pb/206Pb-evaporation zircon ages) and 327–342 Ma (range of U/Pb zircon ages) suggesting a Lower Carboniferous age for the initiation of the Pfahl zone. Absence of inherited older cores in all investigated zircons indicates that incorporation of crustal zircon material has played virtually no role or that the melting temperature was very high. Determination of the dyke emplacement age is complicated by partial Pb-loss in most of the fractions analysed. This Pb-loss can be ascribed to higher U content of the dyke zircons compared to those from host rock. Upper discordia intercept ages of the different dykes range from 322±5 to 331±9 Ma. The dykes are pre- to synkinematic with respect to penetrative regional mylonitisation along the Pfahl zone, and the upper intercept ages provide a maximum age for this tectonic event.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号